Aldolases a and C are ribonucleolytic components of a neuronal complex that regulates the stability of the light-neurofilament mRNA.
نویسندگان
چکیده
A 68 nucleotide segment of the light neurofilament (NF-L) mRNA, spanning the translation termination signal, participates in regulating the stability of the transcript in vivo. Aldolases A and C, but not B, interact specifically with this segment of the transcript in vitro. Aldolases A and C are glycolytic enzymes expressed in neural cells, and their mRNA binding activity represents a novel function of these isozymes. This unsuspected new activity was first uncovered by Northwestern blotting of a brainstem/spinal cord cDNA library. It was confirmed by two-dimensional fractionation of mouse brain cytosol followed by Northwestern hybridization and protein sequencing. Both neuronal aldolases interact specifically with the NF-L but not the heavy neurofilament mRNA, and their binding to the transcript excludes the poly(A)-binding protein (PABP) from the complex. Constitutive ectopic expression of aldolases A and C accelerates the decay of a neurofilament transgene (NF-L) driven by a tetracycline inducible system. In contrast, mutant transgenes lacking mRNA sequence for aldolase binding are stabilized. Our findings strongly suggest that aldolases A and C are regulatory components of a light neurofilament mRNA complex that modulates the stability of NF-L mRNA. This modulation likely involves endonucleolytic cleavage and a competing interaction with the PABP. Interactions of aldolases A and C in NF-L expression may be linked to regulatory pathways that maintain the highly asymmetrical form and function of large neurons.
منابع مشابه
Selenium nanoparticles inclusion into chitosan hydrogels act as a chemical inducer for differentiation of PC12 cells into neuronal cells
Background and Objective: Biomaterials and nanomaterials have generated a great opportunity in regenerative medicine. Neurological disorders can result in permanent and severe derangement in motor and sensory functions. This study was conducted to examine the effects of selenium nanoparticles (Se NPs) as a chemical inducer for differentiation of PC12 cells into sympathetic-like neurons characte...
متن کاملبررسی اثر لیتیوم کلراید در القای سلولهای استرومایی مغز استخوان به سلولهایی با فنوتیپ عصبی
Background & Objective : Bone marrow stromal cells (BMSCs) are a kind of stem cells with high pluripotency. The BMSCs can differentiate into mesodermal and non mesodermal cells. Because of availability of them, they are a suitable source of adult stem cells for cell therapy. Some inducers were used to differentiate stem cells into neural phenotype, such: retinoic acid, dimethyl sulfoxide, dep...
متن کاملPurification of Saccharomyces cerevisiae eIF4E/eIF4G/Pab1p Complex with Capped mRNA
Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their...
متن کاملNeurofilament light chain gene polymorphism and risk of multiple sclerosis in Iranian patients
Background: Multiple sclerosis (MS) is a chronic disease characterized by inflammation and degeneration of the central nervous system (CNS). High levels of Neurofilament light chain (NFL) and Neurofilament heavy chain (NFH) in cerebrospinal fluid (CSF) have been associated with a wide range of neurological diseases including MS. Subjects and methods: Peripheral blood samples were collected from...
متن کاملDifferentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 17 شماره
صفحات -
تاریخ انتشار 2005